Interpolation with piecewise quadratic visually C2 Bézier polynomials

نویسنده

  • Robert Schaback
چکیده

For data satisfying certain generalized convexity conditions, the existence and uniqueness of a piecewise quadratic curvature continuous parametric spline interpolant in IR 2 is proved. Convexity is preserved by the interpolation, and the numerical construction of the interpolant can be carried out eeciently. The interpolation is 4{th order accurate, and a number of examples shows both the applicability and the limitations of this interpolation scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multivariate Powell-Sabin interpolant

We consider the problem of constructing a C1 piecewise quadratic interpolant, Q, to positional and gradient data defined at the vertices of a tessellation of n-simplices in IR. The key to the interpolation scheme is to appropriately subdivide each simplex to ensure that certain necessary geometric constraints are satisfied by the subdivision points. We establish these constraints using the Bern...

متن کامل

Bivariate C1 Quadratic Finite Elements and Vertex Splines

Following work of Heindl and of Powell and Sabin, each triangle of an arbitrary (regular) triangulation A of a polygonal region ii in R is subdivided into twelve triangles, using the three medians, yielding the refinement A of A , so that C quadratic finite elements can be constructed. In this paper, we derive the Bézier nets of these elements in terms of the parameters that describe function a...

متن کامل

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

Differentiable piecewise-Bézier interpolation on Riemannian manifolds

We propose a generalization of classical Euclidean piecewiseBézier surfaces to manifolds, and we use this generalization to compute a C1-surface interpolating a given set of manifold-valued data points associated to a regular 2D grid. We then propose an efficient algorithm to compute the control points defining the surface based on the Euclidean concept of natural C2-splines and show examples o...

متن کامل

Quasi-interpolation by quadratic piecewise polynomials in three variables

A quasi-interpolation method for quadratic piecewise polynomials in three variables is described which can be used for the efficient visualization of gridded volume data. We analyze the smoothness properties of the trivariate splines. We prove that the splines yield nearly optimal approximation order while simultaneously its piecewise derivatives provide optimal approximation of the derivatives...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1989